

Laboratório de Óptica Técnica II

INTERFERÔMETROS		
DE MICHELSON E	Bancada:	
FABRY-PEROT		

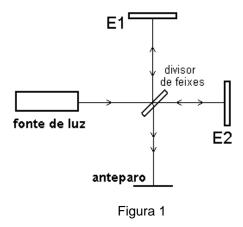
Matrícula							Nome Completo	Nota

EXPERIÊNCIA 1: INTERFERÔMETROS DE MICHELSON E FABRY-PEROT

1. OBJETIVOS:

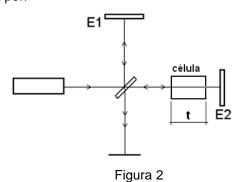
Montar e alinhar um interferômetro de Michelson e um interferômetro de Fabry-Perot; medir o deslocamento de um espelho e avaliar o índice de refração de um gás pelo interferômetro de Michelson; medir o deslocamento de um espelho pelo interferômetro de Fabry-Perot .

2. MATERIAIS UTILIZADOS:


- Laser He-Ne;
- Fontes de alimentação laser;
- Conjunto de interferômetros;
- Suporte de três pontos;
- Trilho;
- Anteparo.

3. INTRODUÇÃO TEÓRICA:

<u>Interferômetro de Michelson</u>: concebido e desenvolvido por Michelson em 1880 [1], tinha por finalidade original a medida da velocidade da luz em relação ao movimento da Terra.


Desde então, tem sido utilizado para um sem número de experimentos em metrologia óptica, processamento de imagens e modulação da amplitude de luz [1,2]. Consiste basicamente de um divisor de feixes e dois espelhos. O feixe incidente sobre o divisor tem uma componente refletida, que atinge o espelho E1 da figura 1. A componente refratada atinge o espelho E2. Ambos os feixes voltam a se combinar no divisor de feixes, produzindo um padrão de interferência que pode ser observado no anteparo.

Pode-se mostrar que a condição para a interferência construtiva no interferômetro iluminado por uma fonte com comprimento de onda λ é dada por $m\lambda=2(L_1-L_2)$, onde L₁ e L₂ são os comprimentos dos braços 1 e 2 respectivamente, e m é um número inteiro positivo. Quando um dos espelhos é deslocado de Δx , este deslocamento pode ser medido contando-se as Δm franjas que se deslocam no padrão de interferência, e é dado por [3]:

$$\Delta x = \Delta m \frac{\lambda}{2} \tag{1}$$

Removendo-se ar de uma célula de espessura ${\bf t}$, posicionada num dos braços do interferômetro, como na figura 2, o padrão de franjas sofrerá um deslocamento Δm devido à diminuição do neste ramo. Se a pressão dentro da célula é menor que a atmosférica, pode-se mostrar que a diferença de índice de refração entre o ar na célula e o índice de refração do ar à pressão atmosférica é dada por:

$$n_{ar} - n = \Delta m \frac{\lambda}{2t} \tag{2}$$

Interferômetro de Fabry-Perot: desenvolvido por C. Fabry e A. Perot em 1899, consiste de dois espelhos planos e paralelos de alta refletividade, e baseia-se no processo de interferência por múltiplas reflexões. Suas principais aplicações encontram-se no campo da medida de estruturas finas de linhas espectrais e também na medida de deslocamentos. Pode-se mostrar que o deslocamento Δx de um espelho, que provoque o deslocamento de Δm franjas, é dado por

$$\Delta x = \Delta m \frac{\lambda}{2\cos\theta'} \tag{4}$$

onde θ ' é o ângulo da luz refratada dentro do espaçamento entre os espelhos. Note que, para incidência normal, $cos\theta'=1$, e a equação (4) reduz-se à equação (1).

4. PROCEDIMENTO:

4.1 Interferômetro de Michelson

Calibração do transladador micrométrico

- Montar o interferômetro como mostrado na figura 1;
- Alinhar o interferômetro; os feixes refratado e refletido pelo divisor de feixes devem ser ortogonais e devem emergir do divisor de feixes paralelamente;
- Deslocar o espelho E2 através do transladador micrométrico do interferômetro. Contar as franjas deslocadas Δm , e contar o número ΔN de divisões do tambor do micrômetro. Faça a medida para 10, 20, 30, 40, 50 e 60 franjas deslocadas;

Medida do índice de refração do ar

- Inserir a cuba num dos braços do interferômetro e evacuar a cuba através da bomba de vácuo;
- contar o número de franjas deslocadas e medir a pressão correspondente no manômetro.

4.2 Interferômetro de Fabry-Perot

Calibração do transladador micrométrico

 Alinhe o interferômetro, posicionando os espelhos paralelamente; utilize frentes de onda esféricas através de uma lente positiva;

 Repita o procedimento utilizado no interferômetro de Michelson, contando 10, 20, 30, 40, 50 e 60 franjas (valores sugeridos!) e as respectivas divisões no tambor do micrômetro;

5. APRESENTAÇÃO DOS RESULTADOS OBTIDOS:

5.1 Interferômetro de Michelson

5.1.1 Calibração do sistema micrômetro+redutor

Preencha a tabela abaixo

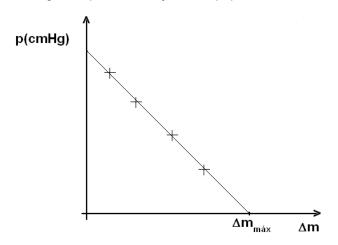
\mathbf{n}^{o} de divisões do micrômetro (ΔN)	nº de franjas deslocadas (Δm)	Δx (nm)

Tabela 1. Deslocamentos, número de franjas.

Através da primeira e terceira colunas da tabela 1, trace em papel milimetrado ou no Excel o gráfico do deslocamento Δx em função do número de divisões ΔN do micrômetro.

Copie no espaço abaixo o gráfico ΔN x Δx :

Escreva AQUI o coeficiente angular do gráfico e a sua unidade:


5.1.2 Medida do índice de refração do ar

Preencha a tabela abaixo

nº de franjas deslocadas (Δm)	P _{cuba} (cmHg)

Tabela 2. Número de franjas, pressão na cuba.

Por extrapolação, determine graficamente o número de franjas $\Delta m_{m\acute{a}x}$ para o qual a pressão da cuba é nula. O gráfico pode ser traçado em papel milimetrado ou no Excel.

Sabendo que n = 1 quando $\Delta m = \Delta m_{m\acute{a}x}$, o índice de refração do ar pode ser determinado com o auxílio da equação (2):

$$n_{ar} = 1 + \Delta m_{m\acute{a}x} \, \frac{\lambda}{2t}$$

Copie no espaço abaixo o gráfico P_{cuba} x Δm :

Escreva AQUI o valor de $\Delta m_{m\acute{a}x}$ obtido por extrapolação:
Escreva AQUI o índice de refração n_{exp} do ar obtido experimentalmente pelo gráfico e pela equação (2) :
Compare o valor n_{exp} com o valor obtido na literatura, encontrado em https://refractiveindex.info/?shelf=other&book=air&page=Ciddor , usando o desvio percentual (NÃO se esqueça de selecionar o comprimento de onda adequando, em μ m!) :

$$\delta(\%) = \frac{\left|n_{exp} - n_{lit}\right|}{n_{lit}} \times 100\%$$

CONCLUSÃO

- Como você fez a calibração do Sistema micrômetro+redutor pelo mesmo equipamento,
 como você compara os valores de calibração obtidos pelo arranjo de Michelson e pelo arranjo
 de Fabry-Perot?
 - Explique a razão de se obter o valor de $\Delta m_{m\acute{a}x}$ por extrapolação no gráfico.
 - Enumere fatores e motivos no arranjo experimental que podem acarretar erros ne medida, e o peso (importância) de cada fator.

REFERÊNCIAS

Exemplo:

1 – G. R. Fowles, *Introduction to Modern Optics*, Dover Publications Inc., New York, 1975;

(para livros)

2 – I.L. Natal, D.C. Santos, E.A. Barbosa, "Comparação da Aceitação das Empadinhas com Azeitonas com e sem Caroços na Faixa Etária Entre 27 e 43 Anos", Opt. Lett., V6, N12 (2003) pp. 231;

(para artigos. No caso, a revista é a Optics Letters, volume 6, número 12, ano 2003, página 231)

3 – ver. p. exemplo, http://www. ifsw.uni-stuttgart.de/english/profile/research.html (para sites na internet)